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actants is used to compute the time evolution of reactant
concentrations. The stochastic algorithm is rigorous in theThe stochastic time evolution method has been used previously

to study non-linear chemical reaction processes in well-stirred ho- sense that it provides an exact solution to the correspond-
mogeneous systems. We present the first treatment of diffusion, in ing master equation for chemical reaction in a homoge-
the stochastic method, for non-linear reaction–diffusion processes. neous, well-stirred reaction volume [6]. Because the Gilles-
The derivation introduces mesoscopic rates of diffusion that are

pie method follows unit-by-unit changes in the totalformally analogous to reaction rates. We map, using Green’s func-
numbers of each reactant species, it is especially well suitedtion, the bulk diffusion coefficient D in Fick’s differential law to the
to the study of systems in which reactant densities arecorresponding transition rate probability for diffusion of a particle

between finite volume elements. This generalized stochastic algo- low and the application of methods based on continuum
rithm enables us to numerically calculate the time evolution of a approximations, such as the traditional ordinary differen-
spatially inhomogeneous mixture of reaction–diffusion species in tial equations of chemical kinetics, is questionable. This
a finite volume. The algorithm is equivalent to solving the time

capability is especially relevant to biophysics and cell biol-evolution of the spatially inhomogeneous master equation. A
ogy. Within the intact living cell, number densities of keyunique feature of our method is that the time step is stochastic and

is generated by a probability distribution determined by the intrinsic proteins, polynucleotides, and intracellular signaling mole-
reaction kinetics and diffusion dynamics. To demonstrate the cules are typically low [1–102 em23]. Stochastic methods
method, we consider the biologically important nonlinear reaction– such as that developed by Gillespie are well suited to the
diffusion process of calcium wave propagation within living

computational study of such systems.cells. Q 1996 Academic Press, Inc.
However, in contrast to a well-stirred reaction system,

the intact living cell is based on a highly complex spatial
organization of its constituents, rather than on homoge-1. INTRODUCTION
neous mixing. The reactants mediating, and processed by,
the cell’s chemical pathways are heterogeneously distrib-Spatiotemporal pattern formation is observed in a wide

range of physical systems driven far from equilibrium. Pro- uted throughout the cytoplasm and cell membranes. The
diffusion of reactant species among localized reaction re-cesses that exhibit this phenomena include hydrodynamic

and thermal convection, parametric wave fronts, solidifi- gions within the cell is therefore a central feature of bio-
physical chemistry. Although a suitable treatment of diffu-cation fronts, solitons in optics, chemical reaction–

diffusion, and biologically excitable media [1]. Mathemati- sion–reaction kinetics for an interacting chemical pathway
as has long been available within the continuum approxi-cal models describing spatiotemporal pattern formation

have traditionally been constructed from deterministic mation suited to high number densities, the lack of a treat-
ment of the spatial diffusion gradient, D =2 [C], in theequations of motion, usually in the form of nonlinear par-

tial differential equations (NLPDEs). Stochastic noise stochastic time evolution method has to date prevented
its application to spatiotemporal pattern formation. Theterms are introduced in either an ad hoc manner or derived,

with approximations, from the underlying master equation. availability of such a method would open a broad range
of intact cellular phenomena to improved computationalNLPDEs generally defy analytical solution and much cur-

rent work has thus focused on the development of tech- study.
In this paper, we present an extension of the Gillespieniques for their numerical integration including multigrid,

finite element, Monte Carlo, spectral, cellular automata, method to reaction–diffusion [RD hereafter] processes in
spatially inhomogeneous systems. Our treatment of diffu-and lattice boltzmann gas methods [2–4].

One very interesting and elegant approach, based on sion enables us to relate, in a well defined manner, the
diffusion coefficient D to the corresponding transition ratethe idea of stochastic simulation, has been introduced by

Gillespie [5–7]. In the Gillespie method a probablistic probability in the multivariate master equation. The
method provides a rigorous approach to simulating sto-schedule of simulated encounters between chemical re-
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chastic reaction trajectories consistent with this master k 5 1, ..., Nz , where i, j, and k uniquely label a voxel
with lengths Lx , Ly , and Lz along the x, y, and z axes,equation and allows RD kinetics to be treated for low

number densities without imposing questionable contin- respectively. To distinguish the real physical surfaces,
which bound the total reaction volume V, from the internaluum approximations. To illustrate the new stochastic algo-

rithm and its application in our research, we consider the boundaries, which are mathematical constructs, we will
refer to these internal voxel boundary surfaces as virtual.biologically important nonlinear reaction–diffusion pro-

cess of calcium (Ca11) wave propagation through the cell The voxels are chosen to be of sufficiently small size such
that the mobile reactants are homogeneously redistributedinterior. Intracellular signaling by means of calcium pulses

that propagate from one region of the cell interior to an- within each voxel, through collisions with non-reacting spe-
cies, over the average time step of the simulation. Thus,other is a ubiquitous and fundamental means by which

intact cells coordinate their spatially distributed patterns within each voxel, if the condition that nonreactive colli-
sions occur at a much higher rate than reactive collisionsof internal structure and function.
is satisfied, then the stochastic formulation of kinetics is
applicable. This condition is generally well satisfied in bio-2. THE REACTION–DIFFUSION MASTER EQUATION
physical systems, where the reactant species are densely

The principal requirement for a stochastic reaction– surrounded by aqueous solvent.
diffusion time evolution method is a theory for generating The bounding surface of V is taken to a be totally re-
finite time steps, to advance the simulation, determined flecting barrier, impermeable to diffusion. Thus the bound-
by the intrinsic reaction kinetics and diffusion dynamics ary conditions on the concentrations Ca of each of the
of the system. Consider a volume V that contains NS1 1 a 5 1, ..., NS1 1 NS2 species are of the Neumann type, with
NS2 reactant species Sa; a 5 1, ..., NS1 1 NS2. The NS1 1
NS2 species can participate in Re reversible reactions Re; ­Ca

­x U
x50

5
­Ca

­x U
x5NxLx

5 0 (3)e 5 1, ..., NR of the general stochiometric forms

m1S1 1 m2S2 1 ? ? ? 1 mNS1
SNS1

R
C

1

nNS111SNS111 and similarly for the y and z axes.
In the treatment of homogeneous reaction systems [5–7],

1 nNS112SNS112 1 ? ? ? 1 nNS11NS2
SNS1NS2

(1a) forward and reverse reactions are regarded as two distinct
and independent processes. Thus, to develop a unifiednNS111SNS111 1 nNS112SNS112 treatment of reaction–diffusion in this method, we resolve
the net diffusive flux of a species Sa across each virtual

1 ? ? ? 1 nNS11NS2
SNS11NS2

R
C

2

m1S1 boundary into two distinct and independent processes: in-
flux and outflux. In contradistinction, solving for Fick’s

1 m2S2 1 ? ? ? 1 mNS1
SNS1

, (1b) diffusion equation

where c1 and c2 are the stochastic rates for a pair of forward ­Ca

­t
5 Da=

2Ca; a 5 1, ..., NS1 1 Ns2 (4)and reverse reactions, respectively. A stochastic reaction
rate parameter ce is defined in the Gillespie procedure
such that, to first order in dt, ce dt is the average probability over all the voxels, simultaneously, and taking the spatial
that a particular combination Re of reactant molecules will gradient yields the average net flux at point. On a voxel
collide and react in the reaction volume in the next time surface, this net flux is the sum of the fluxes into and
interval dt [5–7]. If V is the reaction volume, then each ce out from the voxel treated separately in the stochastic
is related to the more familiar deterministic kinetic rate reaction–diffusion method.
constant ke by To calculate the mean diffusion rate da and the corre-

sponding probability density consider the Sa molecules ini-
ce 5 keV d, (2) tially within the voxel of interest to be labeled. A labeled

molecule can diffuse from the voxel of interest, the ijkth
voxel, to an adjacent voxel, one of the (i 6 1)jkth,where d is the power of the spatial dimension in the deter-

ministic kinetic rate constant. We will employ this conven- i( j 6 1)kth, or ij(k 6 1)th voxels. However, once a labeled
molecule diffuses out of the voxels adjacent to the voxeltion here, but in the context of local volume elements that

partition the overall reaction volume V. of interest to a voxel two voxels away from the voxel of
interest, one of the (i 6 2) jkth, i( j 6 2)kth, or ij(k 6 2)thWe begin our development of the method, by parti-

tioning the reaction-diffusion volume V into a set of finite voxels, its label is removed, so that only the remaining,
labeled molecules within the voxel of interest contributevolume elements (voxels), Vijk; i 5 1, ..., Nx; j 5 1, ..., Ny;
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to the subsequent outward diffusion. The unlabelling of a evolution of P generated by the chemical kinetics (1) is
represented by the reaction part of the RD master equationlabeled molecule upon crossing a boundary is equivalent

to total absorption of the labeled molecule at the boundary.
Thus the boundary conditions for the virtual internal

­P
­t

5 ONx

i51
ONy

j51
ONz

k51
h[c1h1E1,i jk(2m1)E2,i jk(2m2)boundaries are the Dirichlet type,

Caux5(i11)Lx
5 0; i 5 1, ..., Nx 2 2 (5a) ? ? ? ENS1,i jk(2mS1)ENS111,i jk(1n1)

Caux5(i22)Lx
5 0; i 5 2, ..., Nx (5b) 3 ENS112,i jk(1n2) ? ? ? ENS11NS2,i jk(1nNS11NS2

)] P
(8)

1 [c2h2E1,i jk(1m1)E2,i jk(1m2)
and similarly for y and z. Applying similar reasoning to

? ? ? ENS1,i jk(1mNS1
)ENS111,i jk(2nNS111)voxels that contact the physical boundary of the total reac-

tion volume V we note three possible combinations of
3 ENS112,i jk(2nNS112) ? ? ? ENS11NS2,i jk(2nNS11NS2

)] Pj,boundary conditions along each dimension:

(1) internal voxels with homogeneous
where we have used the shift operator notation of van
Kampen [10], such that

Caux5(i22)Lx
5 Caux5(i11)Lx

5 0 conditions, (6a)

Ea,i jk(6ma)P(..., Xa21,i jk , ..., Xa,i jk , ..., Xa11,i jk , ...)
(9a)(2) lower bounding voxels with mixed

5 P(..., Xa21,i jk , ..., Xa,i jk 6 ma , ..., Xa11,i jk , ...)

­Ca

­x U
x50

5 Caux52Lx
5 0 conditions, (6b) and

ENS11a,i jk(6nNS11a)
(3) upper bounding voxels with mixed

P(..., XNS11a21,i jk , ..., XNS11a,i jk , ..., XNS11a11,i jk , ...)
(9b)

Caux5(Nx22)Lx
5

­Ca

­x U
x5NxLx

5 0 conditions. (6c) 5 P(..., XNS11a21,i jk , ..., XNS11a,1i jk

6 nNS11a , ..., XNS11a11,i jk , ...)

Thus there are, in total, nine distinct classes of voxels to
consider for the full three-dimensional partitioning. denote the change in the state of the system, according to

The mean outward diffusion rates da and probability the reaction stoichiometry, upon the occurrence of a spe-
densities are calculated by constructing the Green’s func- cific reaction in a particular ijkth voxel. The h6 reaction
tion satisfying (4) with finite boundary conditions (5) and state variables [5, 6] in (8) are given by
(6). Note that this is done only for the Sa concentrations
and not for any non-reacting species that constitute the
media through which the reacting species diffuse. This h1 5 p

NS1

a51

Xa!
ma!(Xa 2 ma)!

(10a)
procedure is repeated for each of the nine classes of voxels
until all the da and corresponding probability densities
are determined. for the forward reaction and

The grand probability distribution of the multivariate
master equation for the reaction–diffusion system (1) is
written as h2 5 p

NS11NS2

a5NS1

Xa!
na!(Xa 2 na)!

(10b)

P 5 P(..., X1,i jk , X2,i jk , ..., XNS1,i jk ,
(7)

for the reverse reaction.
XNS111,i jk , ..., XNS11NS2,i jk , ...; t) In order to establish transition rates da relevant to diffu-

sional transport on the mesoscopic scale of spatial organi-
zation represented by a ijkth voxel within V, we will requirewherein the state of the system is defined by the probability

of finding Xa,i jk molecules of each of the a 5 1, ..., NS1 1 that the microscopic diffusion dynamics be consistent with
the bulk diffusion constant Da for Fick’s differential lawNS2 species in each one of the NxNyNz voxels. The time
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(4). Diffusion between adjacent voxels is then represented Then the probability Pa(x, c, z, t) of finding a Sa molecule,
within the ijkth voxel plus adjacent voxel volumes, at timein the diffusional part of the RD master equation by
t, initially located at (x, c, z) within the ijkth voxel, is given
by the action of Ga on the initial distribution:­P

­t
5 ONx

i51
ONy

j51
ONz

k51
ONS

a51
dahXa,(i21) jk[Ea,(i21) jk(21)Ea,i jk(11)]P

Pa(x, c, z, t)
1 Xa,(i11) jk[Ea,i jk(11)Ea,(i11) jk(21)]P (11)

5 E(i11)Lx

(i22)Lx

dx E( j11)Ly

( j22)Ly

dy E(k11)Lz

(k22)Lz

dz
(15)1 Xa,i jk[Ea,(i21) jk(11)Ea,i jk(21)

Ga(x, y, z, t; x, c, z, to 5 0)Pa(x, c, z, 0);1 Ea,i jk(21)Ea,(i11) jk(11)]Pj,

i 5 2, ..., Nx 2 1; j 5 2, ..., Ny 2 1; k 5 2, ..., Nz 2 1,
where we have again used the shift operator notation

where Pa(x, c, z, 0) is normalized to unity. Recall that
Ea,(i21) jk(71)Ea,i jk(61) the voxels are taken to be sufficiently small such that the

concentration can be taken to be uniform over a voxel;P(..., Xa,(i21) jk , ..., Xa,i jk , ..., Xa,(i11) jk , ...) (12)
thus the initial probability density for a particle within any

5 P(..., Xa,(i21) jk 71, ..., Xa,i jk 61, ..., Xa,(i11) jk , ...) voxel is simply

to denote the change in the state of the system as a Sa Pa(x, c, z, 0) 5 Pa(x, 0)Pa(c, 0)Pa(z, 0) 5
1

LxLyLz
. (16)molecule diffuses from the (i 2 1) jkth voxel to the ijkth

voxel or vice versa. As noted above, the mesoscopic da

transition rate for diffusive particle exchange between vox- In order to construct the Green’s function solution to
els is the inverse of the mean time for first escape of a the diffusion equation with the finite boundary conditions
molecule from the ijkth voxel of interest plus the adjacent specified in (5) and (6), consider first the instantaneous
voxels. It will be calculated below from the first escape source function Ga,0 solution to the diffusion equation in
probability density constructed using the Green’s function a region of infinite extent [12]:
solution to the diffusion equation.

Ga,0(x, y, z, t; x, c, z, to) 5
1

8[fDa(t 2 to)]3/2

(17)
3. THE DIFFUSIONAL PROPAGATORS

The Green’s function for diffusional particle propaga-
exp F2

(x 2 x)2 1 (y 2 c)2 1 (z 2 z)2

4Da(t 2 to) G.tion within V satisfy the same boundary conditions, (5)
and (6) , as the concentration. As the boundary conditions
for each orthogonal dimension are identical, the formal G0 represents the probability of finding a particle at posi-
Green’s function solution satisfying the diffusion equation tion (x, y, z) at time t after instantaneous injection of
in three dimensions (4) is immediately given by X (0)

a,i jk particles into the ijkth voxel at position (x, c, z) at
time to. In the limit t R to, the source function (17) reduces

Ca(x, y, z, t) to the delta function:

5 E(i11)Lx

i
dx E( j11)Ly

j
dc E(k11)Lz

k
dz

(13) lim
tRto

Ga,0(x, y, z, t; x, c, z, to)
(18)

Ga(x, y, z, t; x, c, z, to 5 0)Ca(x, c, z, 0);
5 d (3)(x 2 x)(y 2 c)(z 2 z).

i 5 0, ..., Nx 2 1; j 5 0, ..., Ny 2 1; k 5 0, ..., Nz 2 1.
Since each voxel is a system with finite boundaries, we

Diffusion is independent in the three orthogonal spatial apply the method of images; an infinite number of image
dimensions. Thus, the Green’s function solution in three points or virtual sources, described below, are constructed
dimensions is a product of the solutions in each spatial to satisfy the two boundary conditions per dimension. To
dimension (for identical boundary conditions in each di- illustrate the method we will construct the Green’s function
mension). satisfying the Gaux5(i22)Lx

5 Gaux5(i11)Lx
5 0; i 5 2, ...,

Let the time that the a molecule Sa leaves the voxel of Nx 2 2 class of boundary conditions (Fig. 1). The others
interest plus adjacent voxel volumes be t. Thus, follow similarly.

Consider the three voxel region [(i 2 2)Lx, (i 1 1)Lx]
P(t $ t) 5 Pa(x, c, z, t). (14) with an instantaneous source of X (0)

a,i jk particles introduced
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FIG. 1. Method of (infinite) images or virtual sources used to construct the Green’s function for diffusion satisfying the absorbing boundary
conditions. The absorbing boundaries are indicated by the solid vertical lines at x 5 (i 2 2)Lx and x 5 (i 1 1)Lx. The position of the real source
is indicated by d while the positions of the virtual sources are indicated by s. Antiparallel arrows from the sources indicate concentration (G 5

0) cancellation at one of the two boundaries.

into the ijkth voxel at (i 2 1)Lx 1 x0 between (i 2 1)Lx points on either side of the system boundaries (Fig. 1).
Thus, at x 5 (i 2 2)Lx, the terms of the infinite series forand iLx at time t 5 t 5 0. After a sufficiently long time,

molecules diffuse to (i 2 2)Lx and (i 1 1)Lx and the flux the absorbing boundary condition are
out of the region of interest is non-zero. But (i 2 2)Lx and
(i 1 1)Lx are the voxel boundaries where we have specified 2 Ga,0ux5(i22)Lx

x5(i23)Lx2x0

1 Ga,0ux5(i22)Lx
x5(i21)Lx1x0

5 0 (19a)
absorbing barriers. Thus, to satisfy the condition that the

1 Ga,0ux5(i22)Lx
x5(i27)Lx1x0

2 Ga,0ux5(i22)Lx
x5(i13)Lx2x0

5 0 (19b)contribution to the concentration at (i 2 2)Lx , from the
source at (i 2 1)Lx 1 x0, vanish we introduce an image

2 Ga,0ux5(i22)Lx
x5(i29)Lx2x0

1 Ga,0ux5(i22)Lx
x5(i15)Lx1x0

5 0 (19c)point or virtual source at (i 2 3)Lx 2 x0. The position
and magnitude of the virtual source is chosen such
that the net concentration at the boundary is identically and so on, while at x 5 (i 1 1)Lx,
zero. The contribution of the virtual source to the dis-
tribution of molecules in the finite system is therefore Ga,0ux5(i11)Lx

x5(i21)Lx1x0

2 Ga,0ux5(i11)Lx
x5(i13)Lx2x0

5 0 (20a)
equivalent to the presence of an absorbing boundary at
(i 2 2)Lx. 2 Ga,0ux5(i11)Lx

x5(i23)Lx2x0

1 Ga,0ux5(i11)Lx
x5(i15)Lx1x0

5 0 (20b)
Similarly, to cancel the flux at (i 1 1)Lx from the source

1 Ga,0ux5(i11)Lx
x5(i27)Lx1x0

2 Ga,0ux5(i11)Lx
x5(i19)Lx2x0

5 0 (20c)at (i 2 1)Lx 1 x0, we introduce a virtual source at
(i 1 3)Lx 2 x0. Half the particles from the real source
diffuse, on average, in the 2x direction and half diffuse, and so on. The Green’s function satisfying these boundary
on average, toward 1x. The magnitudes of the virtual conditions is
sources at (i 2 3)Lx 2 x0 and (i 1 3)Lx 2 x0 are, therefore,
one-half that of the real source at (i 2 1)Lx 1 x0. Since Ga(x, t; x, to) 5 Ga,0[x, t; (i 2 1)Lx 2 x; t0]the virtual source at (i 2 3)Lx 2 x0 also contributes to the
flux at both boundaries, to cancel its contribution at

1 Oy
n52y

h2Ga,0[x, t; (i 1 6n 1 3)Lx 2 x; to] (21)(i 1 1)Lx we need a new virtual source on the opposite
side of this boundary. This new source lies equidistant from

1 Ga,0[x, t; (i 1 6n 1 5)Lx 1 x; to]j.the (i 1 1)Lx boundary, at (i 1 5)Lx 1 x0. Canceling out
the contribution of the virtual source at (i 1 3)Lx 2 x0 to
the concentration at the (i 2 2)Lx boundary requires a The generalization to three dimensions is immediate.

For a voxel with absorbing surfaces on all six boundaryvirtual source at (i 2 7)Lx 1 x0. Additional virtual sources
are similarly introduced, creating an infinite set of image faces,
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Ga(x, y, z, t; x, c, z, to)
(22)

solution of Ga(x, y, z, t; x, c, z, to) should be converted
[12] into the usual Fourier series solution for large

5 Ga(x, t; x, to)Ga(y, t; c, to)Ga(z, t; z, to). times.
The stochastic hypothesis for reaction processes is

The Green’s function satisfying the remaining possible
classes of boundary conditions listed can be constructed

ce dtR ; average probability, to first order in dtR ,using analogous arguments.
that a particular combination of Re

reactant molecules will collide and react (27a)4. THE DIFFUSIONAL RATES da AND THE RD
in the volume Vijk of the ijkth voxel,STOCHASTIC SIMULATION ALGORITHM
in the next time interval dtR .

The non-zero da of the diffusional part of the master
equation (11) are the mean rates of first passage for a Sa and for diffusion processes is
particle within the ijkth voxel to any point on the virtual
(absorbing) surfaces, furthest from the ijkth voxel, of the da dtD ; average probability, to first order in dtD ,
adjacent voxels. Thus, if ktla is the corresponding mean that one of NS molecules will diffuse
time to first passage, then out of the volume Vijk of the ijkth voxel (27b)

into an adjacent voxel, in the next time
interval dtD .da 5

1
ktla

, (23)

Using the stochastic hypothesis (27), we construct the cen-
where tral concept, the reaction–diffusion probability density

function, P(tRD; e, a, i, j, k), for the stochastic reaction–
diffusion method:ktla 5 Ey

0
dt t

­Pxa
(t)

­t
(24)

P(tRD; e, a, i, j, k) dtRD
with PXa

(t) the probability density for mean time to first ; the probability at time t that either (28a)
escape, to be constructed next.

(1) the next reaction in the ijkth voxelThe probability density for the mean time to first escape
will occur in the differential time
interval (t 1 tRD , t 1 tRD 1 dtRD),PXa

(t . t) 5 E(i11)Lx

(i22)Lx

dx E( j11)Ly

( j22)Ly

dy E(k11)Lz

(k22)Lz

dz EiLx

(i21)Lx and will be a Re reaction of
e 5 1, ..., NR possible reactions

dx EjLy

( j21)Ly

dc EkLz

(k21)Lz

dz (25) 5 P0(tRD)he,i jkce dtRD , or (28b)

(2) the next diffusion out of the ijkth voxel3 Ga(x, y, z, t; x, c, z, to 5 0)PXa
(x, c, z, 0)

will occur in the differential time
interval (t 1 tRD , t 1 tRD 1 dtRD)

of a particle from the ijkth voxel, where the fundamental
and will be a Da diffusion ofrole of the Green’s function Ga in the diffusional transition
a 5 1, ..., NS possible diffusive speciesrates is now clear. To summarize, the mean time to first
5 P0(tRD)Xa,i jk da dtRD , (28c)escape is given by

where
ktla 5 Ey

0
dt t

­PXa
(t)

­t
(26a)

P0(tRD) ; the probability density that no reaction or
5 Ey

0
dt PXa

(t) (26b) diffusion occurs in the time interval

(t, t 1 tRD) (29a)
such that

5 exp H2 FONx

i51
ONy

j51
ONz

k51
FONR

e51
he,i jkceda 5 1/ktla , (26c)

where (26b) is obtained by integrating by parts where 1 ONS

a51
Xa,i jk daDG tRDJ. (29b)

for time scales, Da(t 2 to)/L2 . 0.1, the Green’s function
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Thus, P(tRD; e, a, i, j, k) is a joint probability density Oi921

i51
Oj921

j51
Ok921

k51
SONR

e51
he,i jkce 1 Oa921

a51
Xa,i jk daDfunction on the space of the continuous variable tRD and

the discrete variables e, a, i, j, k. For reaction-only or
diffusion-only systems, (29) reduces to

, r2a # Oi9
i51

Oj9
j51

Ok9

k51
SONR

e51
he,i jkce 1 Oa9

a51
Xa,i jk daD, (33b)

P0(tR) ; the probability density that no reaction
occurs in the time interval (t, t 1 tR) (30a) where r2 is a second random variable uniformly distributed

over [0, 1]. Equations (32a) and (32b) correspond to a
reaction and diffusion, respectively.5 exp H2 FONx

i51
ONy

j51
ONz

k51
SONR

e51
heceDG tRJ, or (30b)

The RD stochastic simulation algorithm, formatted in a
manner that allows it to be compared step by step withP0(tD) ; the probability density that no diffusion
the homogeneous system algorithm [5–7], is therefore asoccurs in the time interval (t, t 1 tD) (31a)
follows:

Step 0 (Initialization).5 exp H2 FONx

i51
ONy

j51
ONz

k51
FONS

a51
Xa,i jk daDG tDJ, (31b)

i. Set the time variable t 5 0.

ii. Specify and store the initial values for the
respectively.

NSNxNyNz variables X1,i jk , X2,i jk , ..., NNS,i jk , where Xa,i jkThe central result is to numerically simulate, using
is the initial number of molecules of species Sa in the ijkth

Monte Carlo techniques (described below), the stochastic
voxel Vijk .

reaction–diffusion process generated by P(tRD; e, a, i, j,
k). Note that the finite time step tRD is not assigned a For the reaction part of the algorithm:
priori to satisfy numerical stability, but it is generated by

iii. Specify and store the values of the NR reactioninversion of the P0(tRD) density,
rates c1, c2, ..., cNR

for the NR reactions hRej.
iv. Calculate and store the NRNxNyNz quantities

h1,i jkc1, h2,i jkc2, ..., hNR,i jkcNR
.tRD 5 2

ln(r1)

ONx

i51
ONy

j51
ONz

k51
SONR

e51
he,i jkce 1 ONS

a51
Xa,i jk daD , (31)

For the diffusion part of the algorithm:

v. Specify and store the values of the NS diffusion
rates d1, d2, ..., dNS

for the NS reactions hDaj.where r1 is a random variable uniformly distributed over [0,
vi. Calculate and store the NSNxNyNz quantities1]. Thus, tRD is not a unique fixed value but a distribution

X1,i jk d1, X2,i jk d2, ..., XNS,i jk dNS
.of values characteristic of the intrinsic time scales of the

vii. Specify and store a series of sampling times t1 ,underlying RD processes. A practical consequence of this
t2 , ? ? ? up to a stopping time tstop.method for generating tRD is that numerical stability is

guaranteed. Step 1. Using the Monte Carlo techniques (31) and (32),
The first reaction or diffusion in the ijkth voxel occurring

i. Generate one set of random variables set htRD, e,after tRD is generated by first calculating the sum of reac-
a, i, j, kj according to the joint reaction–diffusion probabil-tions and diffusions over all the voxels
ity density function P(tRD, e, a, i, j, k).

Step 2. Advance t by the generated time step: tRD.
a 5 ONx

i51
ONy

j51
ONz

k51
SONR

e51
he,i jkce 1 ONS

a51
Xa,i jk daD, (32) For a reaction-driven time step:

i. Update the Xa,i jk values of those species involved
in reaction Re to reflect the occurrence of one Re reactionthen finding the partial cumulative sum that is greater than
and recalculate the quantities hn,i9j9k9cn and Xa9,i9j9k9 for thoseor equal to the quantity r2a,
reactions hRnj and diffusions hDa9j, respectively, whose re-
actant–diffusant Xa9,i9j9k9 values have just been changed.

Oi921

i51
Oj921

j51
Ok921

k51
SOe921

e51
he,i jkceD For a diffusion-driven time step:

ii. Update the value of the specie involved in diffu-
sion Da to reflect the occurrence of one Da diffusion and, r2a # Oi9

i51
Oj9
j51

Ok9

k51
SOe9

e51
he,i jkceD (33a)

recalculate the quantities hn,i9j9k9cn and Xa9,i9j9k9 for those reac-
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to effective Ca11 diffusion in living cells, was used. The
initial particle distribution was a 1-em wide gaussian. This
distribution corresponds to an initial delta function distri-
bution situated at 50 em at time t 5 0 s. At the sampling
times, t 5 1.05 s , 5.05 s, and 20.05 s, the theoretical gaussian
root-mean-square (rms) widths are 4.58 em, 10.0 em, and
20.0 em, respectively. At t 5 0.05 s the maximum numbers
of particles in the distribution corresponds to a concentra-
tion of 1 eM. A gaussian function was fit, using binned
maximum likelihood, to the corresponding simulation dis-
tributions yielding rms widths of 4.62 6 0.07 em, 10.1 6
0.2 em, and 21.2 6 0.4 em, respectively. Thus, our RD
algorithm exhibits good numerical accuracy over the time
scale of the simulation presented in the next section. Thus,
we are able to accurately model the transient phenomena
of reaction–diffusion wave propagation in excitable media.
Developing new numerical techniques for improving the

FIG. 2. Stochastic time evolution simulation of diffusion in one di- speed of the stochastic RD algorithm is a current area of
mension. The voxel width is 1 em. A particle diffusion coefficient of

active research.Dcyt 5 10.0 em2 s21, corresponding to intracellular Ca11 diffusion, was
used. The initial particle distribution was a 1 em wide gaussian. This
distribution corresponds to an initial delta function distribution situated 4. APPLICATION TO A SPATIALLY
at 50 em at time t 5 0 s. At the sampling times, t 5 1.05 s , 5.05 s , and INHOMOGENEOUS RD SYSTEM
20.05 s, the theoretical gaussian rms widths are 4.58 em, 10.0 em, and
20.0 em, respectively. A gaussian function was fit, using binned maximum

Simulation of the dynamics of intracellular signaling pro-likelihood, to the corresponding simulation distributions yielding rms
cesses, such as the calcium signaling pathway, presents awidths of 4.62 6 0.07 em, 10.1 6 0.2 em, and 21.2 6 0.4 em, respectively.
broad range of challenges to computational physics. Signal-
ing processes in cells occur under nonequilibrium thermo-
dynamic conditions, are spatially heterogeneous, are highlytions hRn9j and diffusions hDa9j, respectively, whose re-
coupled, and exhibit highly non-linear response to stimuli.actant-diffusant Xa9,i9j9k9 values have just been changed.
Moreover, a distinguishing feature of intracellular signal-Step 3. i. If t has just been advanced through one of the
ing processes is that the number of biologically active mole-sampling times ti, read out the current molecular popula-
cules per volume element can fall below the small N limittion values X1,i jk, X2,i jk, ..., NNS,i jk.
for which the concept of an average concentration is physi-

ii. If t . tstop, or if no more reactant–diffusants re-
cally meaningful. Thus, the stochastic time evolution

main (all Xa,i jk 5 0), terminate the calculation; otherwise
method, which utilizes the exact count of the number of

return to Step 1 and repeat.
particles of each species in a volume element, is a natural
method for simulating the dynamics of intracellular sig-The stochastic RD method, as outlined above, is applica-

ble to models in which the initial conditions are modeled in naling.
We will use a model of the propagation of an ioniceither a deterministic (delta function distribution of initial

conditions) or non-deterministic manner. calcium (Ca11) reaction–diffusion wave through a biologi-
cal cell to demonstrate our treatment of diffusion in theThe stochastic RD method, as outlined above, is applica-

ble to models in which the initial conditions are modeled in stochastic time evolution method. Intracellular calcium is a
key second messenger within a dynamic signaling pathwayeither a deterministic (delta function distribution of initial

conditions) or a non-deterministic manner. that regulates many important cellular processes [13]. Re-
cent experimental work has demonstrated that the intracel-In the next section we will present an application of the

above stochastic reaction–diffusion algorithm to a simula- lular free cytosolic calcium signals can propagate across a
cell as concentration waves [14]. Thus, the calcium signaltion of reaction–diffusion Ca11 wave propagation in living

cells. This process is a remarkable biological example of can exhibit a highly inhomogeneous spatio-temporal orga-
nization. Models have been developed, using reaction–reaction–diffusion mesoscopic pattern formation in inho-

mogeneous excitable media. We first show, in Fig. 2, a diffusion NLPDEs, giving good qualitative agreement with
data [15–18]. The model cell for our numerical simulationstochastic time evolution simulation for only the diffusion

part of the algorithm. The simulation is in one dimension was constructed from 100 sequential cubic voxels of volume
1 em3. This length, 100 em, of our model cell is on thewith a voxel width of 1 em. A particle diffusion coefficient

of Dcyt 5 10 em2 s21, corresponding order-of-magnitude order of the average diameter of sea urchin eggs, a type
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of cell used extensively in the field of cell biology to study 1 cIICRhhIICR,1[EIGS,1(21)Ecyt,1(11)]
intracellular calcium-induced calcium-release (CICR)

1 hIICR,100[EIGCS,100(21)Ecyt,100(11)]jPwave propagation.
The reaction–diffusion CICR process can be succinctly 1 cPM influx[Ecyt,1(11) 1 Ecyt,100(11)]P

described by a non-linear pair of reaction diffusion
NLPDEs as 1 [(cPM effluxhPM efflux,1 1 cPM leakhPM leak,1)Ecyt,1(21)]P

1 [(cPM effluxhPM efflux,100 1 cPM leakhPM leak,100)Ecyt,100(21)]P
­

­t
[Ca11]cyt

1 ? ? ? 1 cIGCS pumphIGCS pump,1[EIGCS,1(12)Ecyt,1(22)]P

5 Dcyt=
2[Ca11]cyt 1 kIICR 1 kPM influx

1O100

i51
cCICRhCICR,i[ECGCS,i(24)Ecyt,i(14)]P  

constant

2 kIICR pump[Ca11]cyt 2 kPM leak[Ca11]cyt
1O100

i51
cCGCS pumphCGCS pump,i[Ecyt,i(22)ECGCS,i(12)]P

1 kCICR S [Ca11]4
cyt

[Ca11]4
cyt 1 K4

1
DS [Ca11]2

CGCS

[Ca11]2
CGCS 1 K2

2
D 1 cstores leakhhstores leak,1[EIGCS,1(21)Ecyt,1(11)]

1O100

i51
hstores leak, i[ECGCS,i(21)Ecyt,i(11)]jP (36)2 kCICR pump S [Ca11]2

CGCS

[Ca11]2
CGCS 1 K2

3
D

1 kstores leak([Ca11]IGCS 1 [Ca11]CGCS) (34a) The effective intracellular diffusion constant for Ca11

was taken to be 10 em2 s21. Propagation of a [Ca11]cytd
dt

[Ca11]CGCS wave, by reaction–diffusion, across a model cell is shown
in Fig. 4a with the corresponding equiconcentration con-
tour plot shown in Fig. 4b. The [Ca11]cyt wave exhibits

5 kCICR pump S [Ca11]2
CGCS

[Ca11]2
CGCS 1 K2

3
D dynamical behaviour characteristic of excitable media in-

cluding (1) a very rapid onset and rise to maximum concen-
2 kstores leak([Ca11]IGCS 1 [Ca11]CGCS), (34b) tration height (,0.2 s for our model) once the [Ca11]cyt

exceeds the calcium gated calcium stores (CGCS release
excitation threshold), (2) a slowly decaying excitation pla-where [Ca11]cyt is the free (or cytosolic) intracellular
teau (about 4 s duration) followed by a more rapid turnoffcalcium concentration and [Ca11]IGCS and [Ca11]CGCS
(about 2 s duration) and (3) a refractory period (on theare the calcium concentrations in the intracellular IP3 and
order of 8 s) wherein the cell cannot be excited from thecalcium gates calcium stores, respectively (see Fig. 3 and
quiescent or resting state. In the quiescent state the freeTable I). Cooperativity, defined by the Hill coefficient
cytosolic and CGCS Ca11 concentrations are approxi-n in
mately 0.15 eM (90 Ca11ions/1 em3 voxel) and 1 eM (600
Ca11 ions/1 em3 voxel), respectively. At the peak of the[Ca11]n

[Ca11]n 1 Kn (35) excitation [Ca11]cyt rises by nearly an order of magnitude
to about 1.2 eM. Further analysis of this system will be
reported elsewhere.

corresponds to the number of calcium ions involved in A snapshot of the average of 10 [Ca11]cyt wave runs 10
the reaction. s after the start of the simulation is shown in Fig. 5. Each

The reaction–diffusion NLPDEs (33) are the first mo- data point represents the average [Ca11]cyt concentration
ment equations of the master equation (with truncation of in each voxel and the errors bars indicate the statistical
higher moments): fluctuation about the mean due to the finite number of

Ca11 ions.
­P
­t

5O100

i51
dcythXcyt,(i21)[Ecyt,(i21)(21)Ecyt,i(11)]

5. DISCUSSION

1 Xcyt,(i11)[Ecyt,(i11)(21)Ecyt,i(11)] We have presented the first treatment of diffusion, in
the stochastic time evolution method, for reaction–2 Xcyt,i[Ecyt,(i21)(11)Ecyt,i(21)]
diffusion processes in which spatial pattern formation may

2 Xcyt,i[Ecyt,(i11)(11)Ecyt,i(21)]jP be of paramount importance. The derivation introduces
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FIG. 3. Two distinct types of Ca11 store receptors; an Ins(1, 4, 5)P3 gated receptor Ca11 store (IGCS) and a Ca11 gated, but Ins(1, 4, 5)P3

insensitive, receptor Ca11 store (CGCS) are postulated in the calcium-induced calcium-release (CICR) model. The first step leading to [Ca11]cyt

wave generation, in this model, is the external stimulus (agonist) induced formation of Ins(1, 4, 5)P3 via membrane receptor activation: conversion
of PtdIns(4, 5)P3 to Ins(1, 4, 5)P3. Ins(1, 4, 5)P3 then gates the IGCS to release primer [Ca11]cyt into the interior (cytosol) of the cell. These pacemaker
IGCS were concentrated in the first voxel adjacent to the cell membrane (as suggested by experimental data). The rise in [Ca11]cyt due to release
from the IGCS and influx across the cell membrane was taken to occur at a constant rate. Onset of a [Ca11]cyt wave occurs once the local [Ca11]cyt

exceeds a threshold level initiating the positive feedback CICR cascade. The wave propagation velocity through the voxels is a function of the
interplay of diffusion and the positive feedback of the CICR mechanism. Relaxation to the quiescent state occurs via [Ca11]cyt reuptake by the
Ca11-ATPase pump of the IGCS and CGCS and by Ca11 extrusion and leakage across the plasma membrane (not shown). In the CICR model,
bistability is determined mainly by the competing processes of CICR and calcium reuptake into the CGCS.

TABLE I

Summary of Ca11 Reaction Processes in the Model Cell (Fig. 3)

Process Reaction Stochastic rate constant

Calcium influx across the cell membrane [Ca11]ext R [Ca11]cyt cPM influx 5 37.5 s21

Calcium efflux across the cell membrane [Ca11]cyt R [Ca11]ext cPM pump 5 0.35 s21

Ins(1, 4, 5)P3 induced calcium release (IICR) from the IGCS [Ca11]IGCS R [Ca11]cyt cIICR 5 a ? 1000 ? e22r s21

Ins(1, 4, 5)P3 gated calcium stores (IGCS) pump [Ca11]cyt R [Ca11]IGCS cIGCS pump 5 0.18 s21

Calcium induced calcium release (CICR) throughout the cell volume 2[Ca11]cyt 1 4[Ca11]CGCS R 6[Ca11]cyt cCICR 5 12500 s21

Calcium gated calcium stores (CGCS) pump 2[Ca11]cyt R 2[Ca11]CGCS cCGCS pump 5 1625 s21

IP3 and calcium gated calcium stores leak (not shown) [Ca11]IGCS R [Ca11]cyt cstores leak 5 0.1 s21

[Ca11]CGCS R [Ca11]cyt



206 STUNDZIA AND LUMSDEN

FIG. 5. A snapshot of the average of 10 [Ca11]cyt wave runs 10 s
after the start of the simulation. Each data point represents the average
[Ca11]cyt concentration in each voxel and the errors bars indicate the
statistical fluctuation about the mean due to the finite number of Ca11

ions.

tion is exactly the environment found in biological sys-
tems, such as for chemical signaling pathways within
individual living cells.
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